
Over View:
One of the main features of the PRO race controller (PRO) is that it is relatively easy to configure or
program. There are two very different but basic programmable components to the system. Either or both of
these systems can use user authored or selected from library.

• The first is the audio sound files.
• The second is the actual race start sequence from a spread sheet

Programming the sound modules:

How it works:
There are two identical audio systems, one for competitors via VHF radio broadcast and the other for the
signal boat volunteers via a speaker mounted inside the controller box. Both are programmed the same
way.

The sound modules used by the PRO hardware are common DFPlayer modules. They play MP3 files that
have been copied on to a micro SD card commonly found in cell phones. While the DFPlayer is a very
convenient solution for this and other applications, it is poorly and somewhat inaccurately documented. The
procedures outlined here are as a result of finding what works and should be followed.

DFPlayer module and microSD memory card

The player reads both FAT 16 and FAT 32 directories but contrary to publications, the player does not
appear to understand file names or volume names. The player appears to be “slot” oriented. The slots are
assigned in the order in which the files are copied onto the Micro SD card. The file in slot 1 is the first file
copied onto an empty card. Therefore 0001_file name.mp3 is in slot 1 if it was copied first. If 0004_different
file name.mp3 was copied first onto a blank card, it would be file 1 since names are meaning less.

The numbered file name structure shown is a good format because it makes sense to humans and can be
used to help keep files in order including sorting in the PC file window. The sorting by the PC file tool
appears to be for its display only and does not correlate any order. This includes viewing the SD Micro card
with the PC..

Copy files to SD Micro using a PC:

• Mount and open card on PC
• If the entire file system is to be copied, make sure no files exist. Directories are meaningless so

files are copied to the root directory. It is recommended to do a fast format on the SD card. This is
done by opening the properties of the card and selecting fast format.

• Open the source directory and sort. This is where the 4 digit prefix on the file name is handy. First
file or low number is on top.

• Files can be dragged across singly in proper order, low number first. -or- for a block copy, select the
bottom file and shift select the top file. Make sure this select order is followed, it dictates the copy
order. Drag the selection to the SD window

• The file directory on the SD card can be viewed but since it is sorted, this is no indication of the
order copied or “slots”

• File order can be viewed by using the DOS window. Mount SD card. Windows “run cmd” to open
DOS window. In DOS window: select SD card i.e. “G: enter”. Prompt becomes“G:\>” . From there
type “dir enter”. The files will be listed in order

How it's tied together:

The spread sheet generated start sequence (discussed later) selects file slots for the message to be
played. Therefore there is an implied relationship between the sound slots on the card and the file
referenced by the spread sheet that can not be deviated from.

The system reserves the first slots on both of the sound systems for it's use. The radio directory reserves
slots 1-9 and the speaker directory reserves 1-15. The speaker has more reserved slots because it
contains the audio user interface for system setup. Empty slots have a 1 second silent recording that holds
the slot. If you are using a new voice or language, the new recording must contain the same messages for
the slot to maintain the relationship with the firmware. If you are building on existing systems, the
messages can be re-recorded with additional files appended.

It is important that some sort of overall file convention or order be maintained. A good start would be to use
the supplied samples. Do not deviate from the slot order..Record them to a different voice or language but
keep the message intent the same. Keep the message timing the same. Horn sounds should coincide with
the boat horn. Sailors expect or it can be explained that sound takes time to travel but not when the
competitor is at the boat end of the line. Append more files as needed but never delete or change the
slot/message relationship going forward. The PRO controller will support many start sequences but they all
reference the same audio system.

file:///G:/

Screen shot of speaker file directory

 Preparation is extremely important !

Recording the files: The system was developed using Audacity . It is free (contributions recommended)
and works well. This document will not discuss recording techniques or how to use a recording tool. Most of
the defaults in Audacity work well. Use monaural. Experiment with your microphone levels. Keep the level
constant from file to file and make the levels high without clipping. Be aware of background noise. Practice,
practice, practice.

The files need to be timed to coincide with events in the start sequence. Sound snippets like whistles or
horns can be found on the internet or edited out the existing samples. Once again, it is important that
sounds, like an air horns, be timed accurately with the boat signaling device. It may be helpful to put notes
like file lengths in the meta-data portion of the mp3 file.

Programming the start sequence:

The start sequence is a spread sheet that is formatted to be read and compiled into a down loadable
program written in the programming language C. It is important that none of the formatting should changed
and the rules outlined here be explicitly followed.

Refer to sample spread sheet scheduleONE.xls on http://www.windwhisper.org/PROcontroller/ or the copy
at the end of this document. This actually is the spread sheet used for two different buttons in the first
controller prototype. It contains two start sequences, the six minute repeat/postpone flag drop and the five
minute start. The six minute actually rolls into the five minute so one file can be used for both sequences.
The two buttons are just assigned different entry points into the same sequence. Entry points are discussed
in the section on assigning buttons.

Lines 1 thru 11 contain definitions. Each command has a number assigned to it. The C compiler substitutes

http://www.windwhisper.org/PROcontroller/

the number for the command. Look at lines 1 and 11. They open the sequence with “ /* “ and close with
“ */ “. Everything in between is treated as a comment by the compiler and therefore ignored. Therefore the
definitions here are a copy of definitions that are defined else where. The command names can be be cut
and pasted into the spread sheet to make things easier and reduce typo's. Remember, even

Line 14 begins the array scheduleONE . That name can be edited to something else, like scheduleTWO.
The name is the only thing it that row that can be changed and that cell must contain everything else
already in it.
Line 17 column A opens the array with “ { “.
Line 18 the first instruction in the array. All the lines in the array have the same format. It opens in column B

with a “ { “
• Column C is blank just for formatting.

• Column D contains the time left in the start sequence. The time format is minutes and seconds
with the colon implied..that is not written. Writing the colon will cause a compiler error.

• Column E contains a “ , “ a delimiter used by the C language

• Column F contains the command. Cut and paste the command from the comments above. Anything
other than an exact copy, including case, will cause a compile error.

• Column G contains another comma, a delimiter for the command argument

• Column H has a number or operand that is used by the command. Times in this field are ½ second
increment so a one second boat horn would be the number 2.

• Column I contains “ }, “ and that is the syntax for C to close that row in the array

Line 18 executes as at 6 minutes 10 seconds before the race starts (count down) turn on the radio
transmitter for 5 seconds. (½ second resolution)
Line 19 also at 6:10 send message 13 to the radio
Line 20 similarly at 6:10 plays message 18 on the speaker.

Note: remember the relationship between the message number and then file structure on the SD cards

Line 119 column A closes the array with “ }; “

Additional tips:

The compiler needs to know the number of rows in the array. That is entered automatically by the spread
sheet in cell 14 E. The spread sheet counts the number of filled cells in column B including comments. It
does not care what is in the cell so there can not be anything other than the opening “{“ for each line in the
array. Anything else in that column, including comments, will cause an erroneous count.

The C compiler treats everything after the double slash // til the end of the line as a comment. Note that this
does not mean embedded in the line. the sequence /* ….. */ treats every thing in the middle, including
multiple lines, as comments. Remember: nothing in column B...never.

 I like to insert a blank row with all the mandatory syntax. I then cut and paste that row into additional rows.
I then fill in the time, command and operands into each row. Unused rows can be deleted later. This
method seems to cut down on the typo's.

If the command Reload_Count is used, it must be the last instruction executed in the schedule. Since it
changes count down counter, commands after it might not get executed. This command provides the
rolling start. If Reload_Count is not used, the sequence terminates after the last command and the system
wait for the next button press.

Assigning Buttons:

Each button must be bound or assigned to a schedule. The button also needs an assignment for an initial
or starting time for the count down timer. That assignment is the entry point into the schedule. The buttons
may share the same schedule but have different entry points. An example is the six and five minute
buttons, the five minute being a later entry into the six minute.

Unused buttons still need a sequence and entry point. The same dummy file can be used for all the unused
buttons. My dummy file gives a long sound on the beeper and plays an button unassigned messag.

The assignments are in a file called button_assignment.h. This file is compiled with the rest of the source
files including the schedule files . A copy of the assignment file, used in the prototype, with explanations
follows below.

/***
There are 4 buttons in the system that are programmable
for use when the system is in standby waiting to enter a start
sequence. The buttons may be used for other things when the
system is not ready to begin a start sequence.

The system may have one or multiple start schedules. For our purposes
we have four that have been prepared elsewhere with a spread sheet.
Each schedule is an array that has a case sensitive name. That name
must be entered into the appropriate button i.e. but3sched is attached to
ScheduleONE in the first line below.

The schedule must have an starting value for the count down counter...time
before race starts. the format is minutes and seconds. The colon in the time
is implied and can not be used.

In our example below we are using a six minute sequence. but3 begins with the horn
for the dropping of the postpone or repeater. Since the 5 minute sequence is just
a subset of the 6 minute sequence, but1 uses also uses ScheduleONE but enters
at 5 minutes 10 seconds, which is the 5 horn alert.

Every button must have an entry even if it is the same as another button.

Case and spelling is critical so cut and paste is recommended.

 ScheduleZERO ScheduleONE ScheduleTWO ScheduleTHREE

**************************************/

#define but0alt_sched ScheduleTWO
#define but0alt_entry 2 // Button not assigned
#define but1alt_sched ScheduleTWO
#define but1alt_entry 2 // Button not assigned
#define but2alt_sched ScheduleTWO
#define but2alt_entry 2 // Button not assigned
#define but3alt_sched ScheduleTWO
#define but3alt_entry 2 // Button not assigned

#define but0_sched ScheduleZERO // 3 minute sequence
#define but0_entry 305
#define but1_sched ScheduleTWO // Button not assigned
#define but1_entry 2
#define but2_sched ScheduleONE // 5 minutes 10 seconds
#define but2_entry 511
#define but3_sched ScheduleONE // 6 minutes 0 seconds
#define but3_entry 611

Compiling and downloading:

The actual compiling and downloading the spreadsheet generated schedules involve the firmware source
files and are beyond the scope of the end user.

Spread sheet schedules are outputted as csv files with blank delimiters. For C language convention sake
the .h delimiter is used so the csv outputted file becomes ScheduleONE.h

Presently all the files including the source files for the firmware are complied and linked into one Intel hex
format file. The processor used is an Atmel AT89c51rd2, a vintage 8051, but current and more than
adequate for the job. The SDCC (small device C compiler) compiler and linker generates the hex file. The
download is done through the uart using an Atmel PC utility called FLIP. Flip erases and programs the hex
file into the flash memory on the processor. A USB to asynchronous converter (FTDI) dongle connects the
PC running FLIP to the programming/debugging port on PRO race controller board.

Opening the box:

Unless the box needs to be opened, such as installing new audio micro SD memory files, do not open the
box especially if it is installed in a wet environment.

A lot of care went into the design to make it water resistant. The enclosure selected is a Bud industries
IP65 rated poly-carbonate box PN-1325-C. The only penetrations are an IP-67 rated bulkhead connector
and a small penetration in the cover for the switches. The cover penetration has a circuit board for domed
switches epoxied over it. Over the top of the switch board and domes is the switch membrane with a
waterproof adhesive and additional adhesive around the edges.

All that said, care and patience must be taken putting the cover back on. The silicone gasket in the cover
must be intact in good shape with no deformities or aged out. The raised lip on the box that mates with the
gasket and must have no nicks or other deformities. The screws need to be retracted so they do not
engage or falsely locate the cover. The lip of the box must fully engage the gasket in its slot all the way
around the box. I like to squeeze it and make sure that it fully engages the entire gasket. The Bud people
mention a click. Then start engaging the screws. First in opposite corners then the center. Very lightly. Then
make sure the gasket is still compressible by squeezing again around the box. The compression is slight
but should be there. Tighten again following the same pattern. Without a torque screw driver it has to be by
feel. When you feel that it is starting snug up you are done. There should be a crack all the way around at
the seam. The goal is not to pull cover down so tight that it introduces distortions.

ScheduleONE

User programming.odt 1/26/2019

